Carbon Capture with Fuel Cell Power Plants

United States Energy Association
March 16, 2017
Agenda

• FuelCell Energy
 • Fuel Cells and Carbon Capture
 • DOE Office of Fossil Energy Program

• ExxonMobil
 • Carbon Capture and Sequestration Experience
 • Fuel Cell Technology

• Summary
Delivering clean and innovative solutions for the supply, recovery & storage of energy

- More than 50 installations globally with the world’s leading companies
- Installations and operations on 3 continents
- Billions of KWh’s of ultra-clean power delivered
- American designed & manufactured
Energy Mix Shifts to Lower-Carbon Fuels

Global Energy Mix
Percent

- 2015
- 2040

Other Renewables
Wind & Solar
Nuclear
Coal
Gas
Oil

Energy-Related CO₂ Emissions by Region
Billion Tonnes

- 2010
- 2025
- 2040

Non-OECD
China
OECD
U.S.

Source: 2017 ExxonMobil Energy Outlook
Long-Term Stabilization Requires Transformation

- Efficiency / Reduce Demand
- Decarbonize Global Economy
- Negative GHG Emissions
Value Drivers

• Conventional carbon capture approaches are energy intensive – typically consume ~20% of host power plant output
• Carbonate fuel cells can be configured to capture CO$_2$ as a side reaction of power generation
• Power generation during carbon capture adds value stream that improves carbon capture economics

Current Actions

• US DOE Office of Fossil Energy contract with FCE for development and pilot demonstration of capture from coal source
• FCE and ExxonMobil evaluation of capture from natural gas turbine exhaust stream

350MW Plant for capture from coal systems, developed in DOE program

Based upon work supported by the Department of Energy under Award Number DE-FE0026580
SureSource™ Fuel Cells

Core of Carbon Capture
- Designed for Industrial and Utility Power Applications
- Refined from DOE supported initial development
- Power generation without combustion
- Key DFC attributes allow for unique adaptations:
 - Internal Reforming
 - Carbonate Electrolyte

Provides CO₂ transfer mechanism that allows for concentration and capture
• Carbonate electrochemical process transfers CO$_2$ from Air Electrode (Cathode) to Fuel Electrode (Anode)
• CO$_2$ is easily separated from Anode exhaust gas because it is no longer diluted with air
Fuel Cell Based CC Applications

- **Large-scale CC from coal-fired plants**
 - Ultimate objective of DOE-supported development
- **CC from distributed natural gas plants**
 - Provide low-carbon baseload or peaking Plants.
- **CC from industrial processes**
 - Reduced carbon footprint from processes such as cement production
- **CC and Enhanced Oil Recovery (EOR)**
 - On-site generation from associated gas with CO$_2$ capture for EOR
- DOE funded project to demonstrate capture from coal power generation
- Opportunity to use pilot to demonstrate natural gas capture under ExxonMobil Joint Development program
- Southern selected Plant Barry as best site choice
 - Coal and natural gas power generation
 - Plot space availability
 - Existing flue connection supporting past carbon capture projects
 - Supportive management and staff
- Project will be single SureSource 3000-based capture system
 - 90% capture from 3MW of coal exhaust
Example of Near Term System

• Carbon Capture Fuel Cell Farm with 12 SureSource 3000tm-based capture systems
 • 18 MW at 90% capture (500 tons/day from coal flue plus 200 tons/day from fuel cell ng)
 • 27 MW at 70% capture (700 tons/day from coal flue plus 300 tons/day from fuel cell ng)
• 3 acres total site
• Potential to expand incrementally as needed
Long-Term Stabilization Requires Transformation

- Efficiency / Reduce Demand
- Decarbonize Global Economy
- Negative GHG Emissions

ExxonMobil
CO₂ Capture and Storage Background

- Power generation and industrial operations are major sources of CO₂.
- Amine CO₂ capture technology is proven.
- Storage technology is proven, at small scale.

Natural Gas Power Plant

- CH₄ → Combustor → Power → Flue gas
- Flue gas: 4-6% CO₂, 1 bar, 140°C

Liquid Amine CO₂ Capture Plant

- Flue gas enters the Capture Plant.
- Rich amine is added and absorbed CO₂ is captured.
- CO₂ is then extracted and sent for EOR or sequestration.
- CO₂ concentration >95%, 150 bar, ~3,500x increase in CO₂.

Note: CO₂ source data from EPA.
ExxonMobil’s CCS Experience

• Working interest in approximately 25% of the world’s CCS capacity
 – ~7 million metric tons CO₂ captured for sequestration annually

• Current CCS efforts focus on:
 – Developing technologies to reduce CO₂ capture costs
 – Advocating for sound policy
Why fuel cell carbon capture?

- Commercially available technology
- Modular design
- Lower costs - generates power while capturing CO\(_2\)
- Applicable to natural gas & coal-fired power plants
- Domestic fuel source with minimal CO\(_2\) emissions
- American ingenuity for global application
Potential CO₂ Capture Using Carbonate Fuel Cells

- Fuel cell carbon capture enables typical 500 megawatt (MW) gas-fired power plant to generate additional 120 MW of power
- Potential to capture 90 percent of a natural gas-fired power plant’s CO₂ emissions
- Further potential to produce up to 150 million cf/day of hydrogen
Summary

• Making a domestic fuel source even more environmentally friendly
• Utilizing commercially proven fuel cell technology
• Modular and lower costs
• Invented in America
• Collaboration brings together world-leaders in respective industries