ALLAM CYCLE COAL – A NEW CLEAN COAL POWER CYCLE

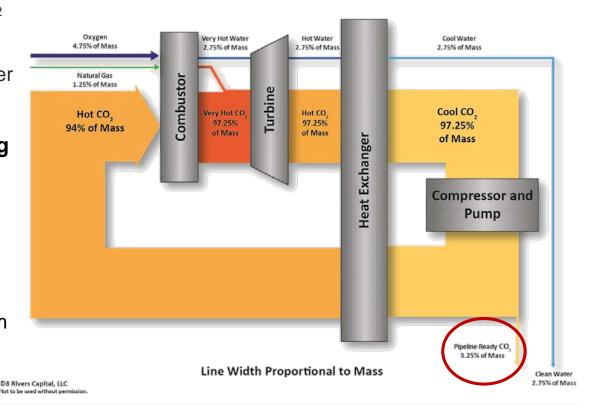
Presentation at 2017 U.S.-China Clean Coal Industry Forum Changes-Challenges-Collaboration in the Coal Industry

December 1st, 2017

Dr. Xijia Lu

8 Rivers Capital (Durham, NC, USA)

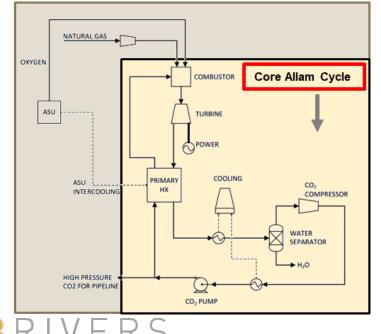
xijia.lu@8rivers.com


2

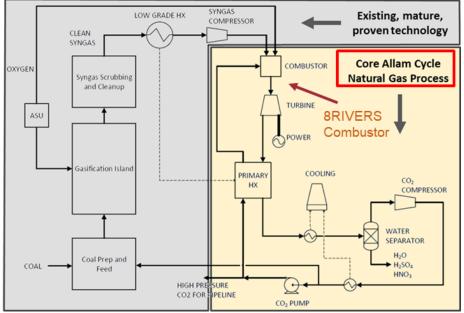
What is the Allam Cycle?

• The Allam Cycle is

- A semi-closed, supercritical CO₂ Brayton cycle,
- That uses oxy-combustion with natural gas, coal syngas, or other carbonaceous fuels.
- Historically, CO₂ capture has been expensive, whether using air to combust or oxycombustion.
- The Allam Cycle makes oxycombustion economic by:


- Relying on a more efficient core power cycle.
- Recycling heat within the system to reduce O₂ and CH₄ consumption, and associated costs of the ASU.

The Allam Cycle is Being Commercialized in Two Pathways


Efficiency Breakdown				
Gross Turbine Output	82.7%			
CO ₂ Comp+Pump Power	-11.6%			
Other Plant Auxiliary Power	-12.2%			
Net Efficiency	58.9%			

8RIVERS^{ENERGY}

(coal+)

NET Power Is Demonstrating the Core Allam Cycle

50MWth gas plant in La Porte, TX

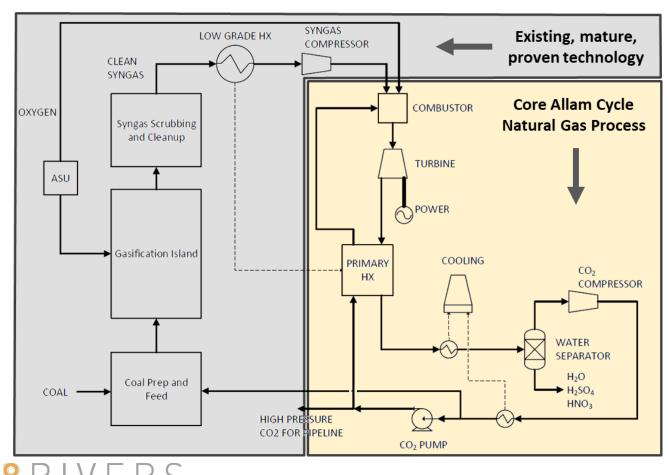
- Scaled down from 500MWth design
- Construction nearing completion; commissioning in progress.

Includes all core components

- Combustor/turbine, heat exchangers, pumps/compressors, controls, etc.
- Grid connected and fully operable

\$140 million (USD) program

- Includes first of a kind engineering, all construction, and testing period
- Partners include Exelon Corpration, CB&I, 8 Rivers and Toshiba


The coal cycle can utilize the turbine already under development

 Operating conditions, performance and efficiency can be maintained across fuels

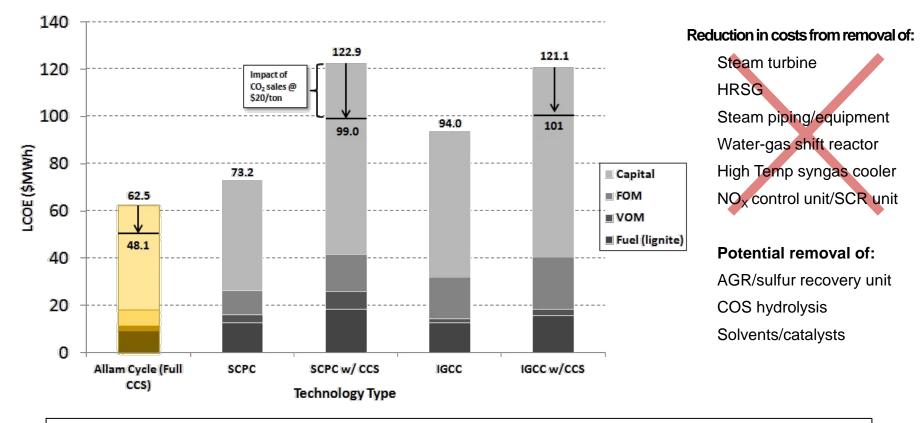
The Core Allam Cycle Platform Is Being Extended to Coal

The Allam Cycle can be used with solid fuels while maintaining all the benefits of the core Allam Cycle.

Efficiency	LHV	нну	
Gross Turbine Output	76.3%	72.5%	
Coal prep & feed	-0.2%	-0.2%	
ASU	-10.2%	-9.7%	
CO ₂ , Syngas Comp.	-9.1%	-8.7%	
Other Auxiliaries	-6.5%	-6.1%	
Net Efficiency	50.3%	47.8%	

- High efficiency with existing gasifiers.
- Significant process simplification vs. IGCC.
- Can use unique impurity removal methods.
- Special material considerations to prevent corrosion.
- Zero emissions, including CO₂, SOx, NOx, Hg, particulates.

8 RIVE


 $\zeta \subseteq$

Allam Cycle Coal Achieves High Performance with Various Gasifiers and Feedstocks

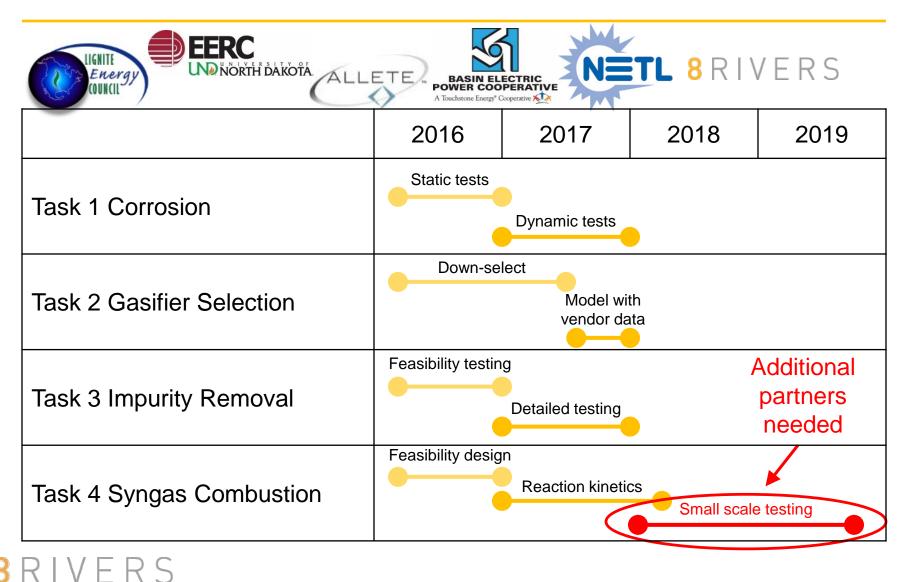
Coal Type	Gasifier Type		Heat Recovery	ccs	Efficiency (%HHV)
Bituminous	Entrained flow, dry-feed	Slagging	Syngas cooler	Y	49.7
Lignite	Moving bed	Slagging	Full water quench	Y	48.2
Bituminous	Entrained flow, dry-feed	Slagging	Full water quench	Y	47.8
Lignite	Entrained flow, dry-feed	Slagging	Full water quench	Y	47.4
Bituminous	Entrained flow, slurry	Slagging	Syngas cooler	Y	46.8
Lignite	Fluidized bed	Non-slagging	Syngas cooler	Y	43.3
Coal Type	Gasifier Type		Heat Recovery	ccs	Efficiency (%HHV)
Bituminous	Entrained flow, dry-feed	Slagging	Syngas cooler	N	42.1
Lignite	Entrained flow, dry-feed	Slagging	Syngas cooler	N	37.6
Bituminous	SCPC	N/A	N/A	N	39.3
Lignite	SCPC	N/A	N/A	N	38.7

Allam Cycle Cases

Increased Performance, Lower Capex, Reduced Complexity Lead to Much Lower LCOE Projections for Allam Cycle Coal

<u>Notes</u>

- Lu et al. Oxy-Lignite Syngas Fueled Semi-Closed Brayton Cycle Process Evaluation (2014)
- Total Plant Cost and O&M costs were estimated for lignite-fired system in conjunction with EPRI; AACE Class 5 estimate
- Cost data for other technologies is taken from NETL baseline reports (Vol. 3, 2011)


Significant Water Savings Compared to IGCC

Analysis of ND lignite-fired Allam Cycle Coal system vs. NETL baselines 10 8.9 9 Water Usage (gpm/MW_{NET}) 7.8 7.2 6.2 6 Withdrawal 5 4.0 4 Process 3.0 2.9 Discharge 3 2.4 2.2 Consumption 2 1.1 1 0 Allam No CCS CCS No CCS CCS Cycle Shell Siemens Siemens **NETL Technology Cases**

Taken from NETL baseline reports (Vol. 3, 2011)

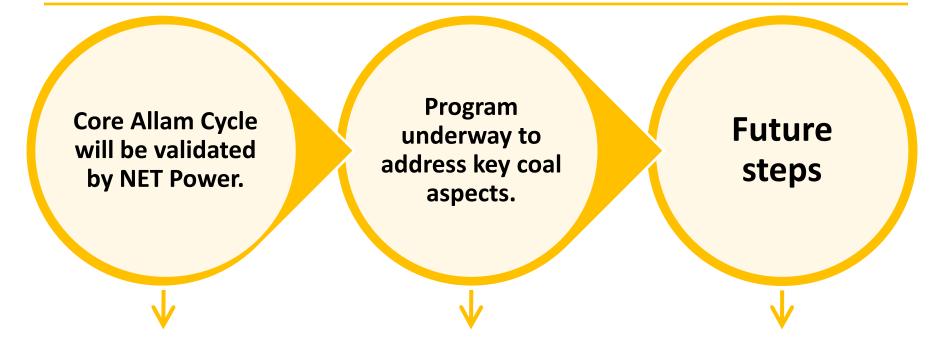
50-60% reduction in water consumption vs. IGCC non CCS using ND Lignite; Major reductions come from: (1) elimination of steam cycle; (2) reduced cooling duty (higher efficiency, utilization of low-grade heat); (3) semiclosed cycle captures and condenses combustion derived water.

Development Program Underway

Syngas Combustor Development is a Key Step

Development status:

- Conceptual commercial syngas combustor design
- Detailed design and CFD modeling for a 5MW_{th} test combustor
- Test program and rig development
- Work supported by US DOE.


Work to date indicates a highly promising design:

- Good mixing and negligible pressure oscillations with uniform exit temperatures
- Consistent performance across a wide range of syngas fuels
- No mechanical or liner cooling issues identified

Program is ready to move to test article developing and operation.

Case SCO2 Oxidizer (02+CO2) Fuel (H2, CO CO2) Oxidizer (02+CO2) Remaining Oxidizer (02+CO2) Remaining Oxidizer (02+CO2) Remaining Oxidizer (02+CO2) Case

Coal Cycle Development Process

Commissioning Underway

8 RIVERS

Main Program To Be Completed in 2018 Pilot-Scale and Commercial-Scale Demonstrations To Be Completed.

11

Thank you.

8 Rivers Capital, LLC

+1 (919) 667-1800 www.8Rivers.com