Improving Efficiency in Electricity Distribution

A Holistic Approach

Global Energy Efficiency Workshop
Washington, DC
March 9, 2010
Why are efficient electric distribution networks important?
Because electricity is the preferred form of end-use energy

• Electricity is the fastest growing form of end-use energy
 - Non-OECD countries will account for 58% of world energy use by 2030
 - In the USA – a mature economy – power generation will increase by 77% between 2006 and 2030, i.e. from 18.0 to 31.8 trillion kilowatt hours
 - The fraction of US energy needs met by electricity increased from 20% in 1960 to 40% in 2000

• The power sector is also one of the largest sources of carbon emissions
 - In India, the 100 GW of thermal power generation capacity accounts for 60% of net power generation capacity and 57% of total greenhouse gas emissions
 - Based on current plans, this scenario is expected to persist until 2020
Although much energy value is lost before it is used

- Average energy lost in converting fuel to electricity is about 30-35%
 - For each 100 units of energy in coal, 30-35 units are lost at the power plant
 - Internal consumption can add another 5-10%
 - Of the 60 units that enter the T&D grid, technical losses range from 7% to 25%
 - Adding commercial losses can increase combined losses to 50% or more

- Experience shows that technical and commercial losses can be managed. Experience also shows that the approach taken can have a huge impact on results achieved.

- The principle of “control the controllables” suggests that increasing distribution efficiency should be a top priority for management
An historic convergence is reshaping the electric business

• Unrelenting increases in demand for electricity
 - Population growth
 - Increasing affluence creates higher demand for more reliable power
 - Electricity is the premium source of energy
 - An increasingly digital world requires it

• Technological advances
 - Information and communications technology (ICT)
 - Metering
 - Generation

• The need to reduce carbon emissions
 - A growing consensus about climate change
 - Electricity production is one of the largest sources
These forces are changing the industry’s business model

Cost Curves for Optimal Plant Size per MW

Thermal Plants

Source: Sally Hunt and Graham Shuttleworth - Competition and Choice in Electricity
John Wiley & Sons, Chichester, 1996
Meanwhile, the customer value exchange is deteriorating

- Unit costs have turned up
- And service quality measures are declining
 - In the USA, SAIDI increased (worsened) by 21% from 2000 to 2005
 - SAIFI increased 13%
 - CAIFI increased 8%

Sources:
PA experience
Developing economies have added challenges

- Supply shortfalls
- Peak load management issues
- Higher technical and commercial losses
- Increasing global competition for resources

An infrastructure spending boom will trigger global competition for resources

Between 2005 and the end of 2010, China will have spent $494 billion on infrastructure. India estimates $250 billion in spending for the power sector alone over the next eight years and total spending on infrastructure of $447 billion for 2006 through 2012.

One US company, Southern California Edison, recently launched a $30 billion, ten-year construction program to replace almost half its transmission and distribution assets.

In *Perfect Power*, co-authored by the retired CEOs of Motorola and the Electric Power Research Institute, the International Energy Agency’s *World Energy Outlook* estimated that over the next 25 years, China’s power sector will need $3 trillion in investment, India’s will need $1 trillion, Latin America’s $750 billion and Africa’s about $500 billion.
Is there a ‘best practice’ way to improve electric distribution efficiency in a developing economy?
Yes, but first some results

• Four discoms used this methodology on a pilot basis
 - Two urban divisions
 - Two rural sub-divisions
• The companies included three state-owned discoms and one private
• Total no. customers in the pilot areas was 214,000 ranging from 24,000 to 74,000
• More than 100 projects were proposed with capital investment of $60 M
• Most of the capital requirement was obtained from banks on commercial terms
• The initiatives have been underway for over five years
• Savings of $70 million per year were identified
• Actual savings achieved to-date were $17 million p.a. as of mid-2009
• One company reduced its total technical and commercial losses from 53% to 23% of total electricity input to the distribution network
• Another developed an agricultural demand side management (Ag DSM) program to cut in half the 30% of electricity provided “free” to farmers
One discom cut its AT&C losses by more than 50%
It also slashed its distribution transformer failure rate
The Success Formula
Begin at the end

ARC + GCR = Customer Satisfaction

Σ (Availability + Reliability + Cost) + Good Customer Relations = Customer Satisfaction
The methodology is straight-forward, but not simple

- Define key results *from the customer’s perspective (see prior slide)*
- Identify the major business processes that drive results
- Define a model according to People, Process, Technology
- Identify best practices
- Specify key performance indicators (KPIs) to measure results
- Conduct an “As Is” assessment to enable gap analysis
- Develop candidate projects to create a center of excellence
- Implement and measure results
The Model Discom & Best Practices
The Model Discom: The Analytic Framework

<table>
<thead>
<tr>
<th>People</th>
<th>Process</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Structure</td>
<td>Asset Management – Planning and managing the</td>
<td>Distribution Network</td>
</tr>
<tr>
<td>Work Management</td>
<td>company’s investment in the physical assets used</td>
<td>- Wires</td>
</tr>
<tr>
<td>- Work Analysis & Staffing</td>
<td>to provide high quality electric service to</td>
<td>- Transformers</td>
</tr>
<tr>
<td>- Work Management Systems</td>
<td>customers.</td>
<td>- Capacitors</td>
</tr>
<tr>
<td>Compensation and Benefits</td>
<td>System Operation & Dispatch – The activities</td>
<td>- Substations</td>
</tr>
<tr>
<td>Training</td>
<td>involved in optimising the flow of electricity,</td>
<td>- Poles</td>
</tr>
<tr>
<td></td>
<td>incl. purchasing & trading plus economic dispatch,</td>
<td>- Etc.</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Operations – Includes the classic</td>
<td>Metering Equipment</td>
</tr>
<tr>
<td></td>
<td>operations and maintenance activities, including</td>
<td></td>
</tr>
<tr>
<td></td>
<td>new hook ups, trouble calls and turn offs as</td>
<td>O&M Equipment (trucks, tools, etc.)</td>
</tr>
<tr>
<td></td>
<td>well as meter testing and repair and other</td>
<td>Computing and Telecommunications</td>
</tr>
<tr>
<td></td>
<td>activities involved in the day-to-day operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the business.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer Processes – Includes the meter-billing-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>collection (MBC) process plus all customer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interfaces, incl. customer relations and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>marketing as well as consumer education and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outreach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corporate Processes – This includes activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that enable the management of the primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>business processes (above) or that are executive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>functions.</td>
<td></td>
</tr>
</tbody>
</table>
Business Process: Asset Management

Asset Management activities related to the planning and management of physical assets employed to provide high quality service to customers. This is a corporate-level business process.

<table>
<thead>
<tr>
<th>Process Component</th>
<th>Best Practice</th>
<th>Technology</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Planning</td>
<td>• Proven load forecasting methodology</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td></td>
<td>• Empirical inputs, e.g. load flow studies</td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
<tr>
<td>Capital Expenditure Analysis</td>
<td>• Use of sound engineering-economic principles</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td>Long-term Investment Plan</td>
<td>• Rigorous challenge & review process</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td>(15 year horizon)</td>
<td>• Use of ROA / SVA principles</td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
<tr>
<td></td>
<td>• Link to capital structure management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Post-completion evaluations done</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term Capital Budget (3 yrs)</td>
<td>• Bottom-up link to operating budget</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td></td>
<td>• Pre-launch authorization required</td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
<tr>
<td>Major Project Management</td>
<td>• Specialized project management group</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
<tr>
<td>System Mapping</td>
<td>• Global mapping system</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td></td>
<td>• Comprehensive data base</td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
<tr>
<td>Maintenance, Analysis & Planning</td>
<td>• Reliability-based maintenance plans</td>
<td>• Modern IT systems</td>
<td>• Adequate staff no. & mix</td>
</tr>
<tr>
<td></td>
<td>• Comprehensive data base</td>
<td>• Advanced software</td>
<td>• Continuous training</td>
</tr>
</tbody>
</table>
Business Process: System Operations & Dispatch

System Operations: optimising electricity flows plus purchasing, trading & economic dispatch

<table>
<thead>
<tr>
<th>Process Component</th>
<th>Best Practice</th>
<th>Technology</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time power supply monitoring and control incl. load dispatch center</td>
<td>• State estimator to estimate load flow on hourly, weekly, mo. basis to ensure 24 hour stable parallel operation with neighbouring grids</td>
<td>• Modern IT systems
• SCADA to optimise dispatch of electricity
• Remote grid stations</td>
<td>• Adequate staff no. & mix
• Continuous training</td>
</tr>
<tr>
<td>Energy Audit and Accounting</td>
<td>• Energy audit & accounting of network, feeder-wise and dist’n transformer-wise monthly.
• 100% reads of boundary meters
• Load parameters.</td>
<td>• Modern IT & s/w systems
• High Voltage Distribution System
• Continuous update of GIS maps
• Feeder wise, distribution transformer wise energy balance</td>
<td>• Adequate staff no. & mix
• Continuous training</td>
</tr>
<tr>
<td>Operational load forecasting.</td>
<td>• Load forecasting (Short term)
• Load flow / monitoring studies
• Contingency / security analysis.
• Effective outage management</td>
<td>• Advanced computer systems
• State-of-the-art software for automated dispatch management
• SCADA system</td>
<td>• Adequate staff no. & mix
• Continuous training</td>
</tr>
<tr>
<td>Power procurement from market</td>
<td>• Evaluate power production & cost + cost of available power
• Measurement of purchasing & trading of economical power</td>
<td>• Advanced computer systems
• State-of-the-art software</td>
<td>• Adequate staff no. & mix
• Continuous training</td>
</tr>
<tr>
<td>Load Management</td>
<td>• GIS/GPS digital mapping
• Load mgmt by feeder control, DTC control, customer load control, capacitor introduction</td>
<td>• State-of-the-art SCADA System
• Distribution automation.
• GIS/GPS mapping system</td>
<td>• Adequate staff no. & mix
• Continuous training</td>
</tr>
</tbody>
</table>
Business Process: Field Operations

Field Operations includes those activities related to the classic operations and maintenance (O&M) activities of the distribution business including construction, new hook ups, repair and other activities involved in the day-to-day operations of the business.

<table>
<thead>
<tr>
<th>Process Component</th>
<th>Best Practice</th>
<th>Technology</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Maintenance Management</td>
<td>• Maintenance manuals
• Prioritize sked for life cycle maint
• Reliability based maintenance plan
• Veg. mgmt, periodic overhauls</td>
<td>• Modern IT systems
• Advanced software
• GIS/GPS utility map
• Feedback from outage mgmt</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
<tr>
<td>Revenue Expenditure Analysis</td>
<td>• Use engineering-economic principles</td>
<td>• Modern IT systems
• State-of-the-art software</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
<tr>
<td>Asset Outage Management and Disaster Management</td>
<td>• Fault detection system for 11KV feeders
• Emergency load shedding schedule
• Utility map integrated with SCADA</td>
<td>• Modern IT systems & s/w
• GIS/GPS Maps
• Mobile maintenance crews
• Mobile transformers</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
<tr>
<td>Building Vendor analysis</td>
<td>• Analyze equipment failures</td>
<td>• Modern IT systems
• State-of-the-art software</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
<tr>
<td>Releasing service connection</td>
<td>• Specialized commercial group w KPIs for time period to release a particular category of service</td>
<td>• Modern IT systems
• State-of-the-art software
• GIS/GPS maps integrated w asset & customer D/Bs</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
<tr>
<td>Trouble Call Management</td>
<td>• Specialised ops group w link to assets, billing data base, complaint center and maintenance crews</td>
<td>• Mobile phones to field staff
• Toll free no. for customers
• Call processing & analysis
• Mobile maintenance crews</td>
<td>• Adequate staff no. and mix
• Continuous training</td>
</tr>
</tbody>
</table>
Business Process: Customer Processes

Customer Processes includes the meter-billing collection (MBC) process plus all the customer interfaces, including customer relations and marketing (including advertising as well as customer education).

<table>
<thead>
<tr>
<th>Business Process Component</th>
<th>Best Practice</th>
<th>Technology</th>
<th>People</th>
</tr>
</thead>
</table>
| Metering, Billing and Collection (MBC) | • Installation of Electronic meters with appropriate networking interface.
• Central billing & administration unit
• Advanced techniques e.g. automatic / remote meter reading, spot reading & billing, online bill payment / query
• Meter testing, meter inspection and replacement order for faulty, slow and fast meters. | • Advanced computer systems
• State-of-the-art software
• RS 232,485 / radio telephone modems, data collection devices e.g. hand held MRIs, data concentration devices
• Spot / pre-paid billing
• Online bill payment system
• Billing system integrated with trouble call system, | • Adequate staff no. & mix
• Continuous training |
| Customer Relationship Management (CRM) | • Trouble call management
• Metering and billing management
• On-line billing and collection
• New Customer management
• Customer communication / updates on power status / planned outages
• Customer awareness re energy efficiency & DSM | • Modern IT systems
• State-of-the-art software
• Integrated trouble call center w asset database, customer database with customer indexing; MBC center, inventory and stores wing, public relations wing, etc | • Adequate staff no. & mix
• Continuous training |
Business Process: Corporate Processes

Corporates Processes include purely executive-level functions, or that support the management of primary (“line”) business processes. These include: organization structure, policy setting, planning and control, performance measurement, treasury and cash management, finance and accounting human resources in formation management, procurement and inventory management.

<table>
<thead>
<tr>
<th>Process Component</th>
<th>Best Practice</th>
<th>Technology</th>
<th>People</th>
</tr>
</thead>
</table>
| Executive management | • GTG (Good to Great) principles
• Effective mgmt selection, devel’t & training
• Emphasize quantification and measurement | • Modern IT systems
• Advanced software | • Adequate no. & mix of specialized staff
• Continuous training |
| Planning and Control, including Performance Measurement and KPIs | • Use of global performance standards
• Extensive use of quantification
• Extensive benchmarking
• Balanced scorecard & KPIs | • Modern IT systems
• Advanced software | • Adequate no. & mix of specialized staff
• Continuous training |
| Marketing and Sales | • Marketing analysis & consumer analysis
• Empirical measurement of service quality
• Consumer satisfaction surveys
• Stratification of markets
• Key account personnel | • Modern IT systems
• Statistical analysis tools
• Customer Relationship Management s/w | • Adequate no. & mix of specialized staff
• Continuous training |
| Treasury and Cash Management | • Prepayments, where feasible
• Automatic deduct for commercial accounts
• Cash management system
• Automated cash collection centers
• Lock box system | • Modern IT systems
• Advanced software | • Adequate no. & mix of specialized staff
• Continuous training |
The Analytic Ingredients

KPIs and KKPIs

Gap Analysis

Best Practices

Gap Analysis

“As Is” Assessment

Projects

DPR

Legend

Process

Lists

Document
High impact detailed project report (DPR) projects

• Distribution transformer replacement
 - Plus DTR management system
• Substation upgrades, replacements and new additions
 - In conjunction with line reconfiguration
• 11kv line & LT line refurbishment
• Meter replacements
• Remote monitoring of SAIDI, SAIFI and voltage levels
Key Performance Indicators
Key Key Performance Indicators (KKPI)

1. Transformer Failure Rate
2. Cable/Overhead Line Failure Rate (11 kV)
3. SAIDI – System Average Interruption Duration Index
4. SAIFI – System Average Interruption Frequency Index
5. CAIDI – Customer Average Interruption Duration Index.
6. Response time to voltage complaints.
7. End-to-end money-flow efficiency: Ratio of bank deposits to energy received (monetized) from Transco
8. Customer Satisfaction Index
9. AT& C Losses - Aggregate Technical and Commercial Losses
10. ROCE - Return on Capital Employed
11. O&M (Revenue Expenses) per unit energy input.
12. Training Statistics
KKPI Algorithms

<table>
<thead>
<tr>
<th>Perspective</th>
<th>UOM</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAIDI – System Average Interruption Duration Index</td>
<td>Hours</td>
<td>(\sum) (Duration of outage) (\times) (No. Customers affected) (Total No. of Customers)</td>
</tr>
<tr>
<td>Distribution Transformer Failures</td>
<td>%</td>
<td>(No of DTR failure during a year) Average No of DTRs during the year</td>
</tr>
<tr>
<td>CAIDI – Customer Average Interruption Duration Index</td>
<td>Minutes per occasion</td>
<td>(\sum) (Customer Interruption Durations) (Total No. of Customer Interruptions) = SAIDI/SAIFI</td>
</tr>
<tr>
<td>OH/Cable Failure Rate</td>
<td>Faults per 100 ckt-km of 11 kV line</td>
<td>No of Faults during a year (\times) 100 (Total 11 kV circuit kilometer)</td>
</tr>
</tbody>
</table>
KKPI Algorithms (cont.)

<table>
<thead>
<tr>
<th>Perspective</th>
<th>UOM</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAIFI – System Average Interruption Frequency Index</td>
<td>Instances</td>
<td>$\sum (\text{No of interruptions}) \times (\text{No Customers affected})$
 (Total No. of Customers)</td>
</tr>
<tr>
<td>Customer Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer satisfaction index</td>
<td>% customers, somewhat or very satisfied</td>
<td>No of customers expressed satisfaction
Sample size of customers interviewed</td>
</tr>
<tr>
<td>Response Index to voltage complaint</td>
<td>% complaints resolved in time</td>
<td>No of complaints resolved within time-limits
(Total No of complaints)</td>
</tr>
</tbody>
</table>
KKPI Algorithms (cont.)

<table>
<thead>
<tr>
<th>Perspective</th>
<th>UOM</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Technical & Commercial Losses</td>
<td>%</td>
<td>Energy Realized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy Import</td>
</tr>
<tr>
<td>End-to-end Money Flow Efficiency</td>
<td>%</td>
<td>Collection Deposited In Bank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy Delivered to the Division (Monetised)</td>
</tr>
<tr>
<td>ROCE – Return on capital employed</td>
<td>%</td>
<td>(Profit before Interest & Tax)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Long term loan + Equity)</td>
</tr>
<tr>
<td>O&M expenses per unit of energy input</td>
<td>Paise</td>
<td>Total O & M expenses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total energy imported</td>
</tr>
</tbody>
</table>
KKPI Algorithms (cont.)

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td></td>
</tr>
<tr>
<td>% of People having undergone training</td>
<td>Actual Versus Training</td>
</tr>
</tbody>
</table>
There are some important lessons learned

• The ‘how’ of the process (not just the ‘what’) makes a big difference
• Begin with a definition of desired – and measurable – results
• An integrated and holistic approach get the best results
• Start in a small area, then set up “shadow” units to promulgate results
• Rigorous planning and analysis pays off
• Dedication of an experience team with the right skills mix a must
• Senior executive support is essential
• Collaboration is the most critical ingredient
Who are these discoms?
The Companies

• North Delhi Power, Ltd.
• Bangalore Electricity Supply Company
• Maharashtra State Electricity Distribution Company, Ltd.
• Madhya Gujarat Vij Company, Ltd.
Post Script
Inefficient irrigation pumps waste electricity ... and water

• Water is an increasingly scarce resource
• Many countries are pursuing increased agricultural production
• Pumping irrigation water from underground aquifers has increased
• Some countries have granted preferential tariffs to farmers
• This can lead to wasteful consumption of both electricity and water
• If efficient tariffs aren’t politically viable, an Ag DSM methodology is an option
• The approach is complex and has notable risks
• An article explaining a concept that is currently in a pilot process is available for those interested
Thank you

Additional information on these projects can be found at:
www.drumindia.com
www.waterenergynexus.com

If you send me a question by email, I will do my best to respond quickly:

James M. Hogan
4601 N. Fairfax Drive, Suite 600
Arlington, VA 22203 USA
+1 (571) 227 9000 (office)
+1 (802) 488 0646 (mobile)

jim.hogan@paconsulting.com